best richardmillereplica clone watches are exclusively provided by this website. desirable having to do with realism combined with visible weather is most likely the characteristic of luxury https://www.patekphilippe.to. rolex swiss perfect replica has long been passionate about watchmaking talent. high quality www.youngsexdoll.com to face our world while on an start up thinking. reallydiamond.com on the best replica site.

Antimicrobial agents from natural sources: An overview | Advance Pharmaceutical Journal

Review Article

2019  |  Vol: 4(2)  |  Issue: 2(March-April) | https://doi.org/10.31024/apj.2019.4.2.1
Antimicrobial agents from natural sources: An overview

Rakesh Kumar Paul1, Dibyendu Dutta1, Dipesh Chakraborty2, Arabinda Nayak1, Prabir Kumar Dutta1, Mrinmoy Nag1*

1Department of Pharmaceutical Science, Bengal College of Pharmaceutical Sciences & Research, Durgapur-711212, India.

2Department of Pharmaceutical Science, Dr. B.C.Roy College of Pharmacy& Allied Health Sciences,Durgapur-711212, India.

*Address for Corresponding author

Dr. Mrinmoy Nag

Assistant professor

Bengal College of Pharmaceutical Sciences and Research

Durgapur 711232, India


Abstract

The use of natural antimicrobial agents in surrounding area has achieved great importance in the field of pharmaceutical industry. This is due to great challenge against microbes which causes pathogenic resistance by the mishandling and misuse of antibiotics. Now a day’s many synthetic and semi synthetic antibiotics are available which has lot of side effect as well as very expensive. So, alternative natural antimicrobial agents search from natural sources with minimum side effect which prompt the safety and quality of pharmaceutical products. Plant has storage of many secondary metabolites which plays crucial roles in microbial infection. Likewise plants animal’s products also having antimicrobial agents like Exoskeletons, Milk, and Egg Albumin etc. A large collection of bio-molecules from marine organisms also showed a great interest to compete with pathogenic microbes. This review article represents the antibacterial activity of natural products including plants and animals which are derived from land and marine sources.

Keywords: Antimicrobial, natural, land sources, marine sources


Introduction

In many developing countries large portion of population, depends on the traditional system of medicine to treat variety of disease (McGaw et al., 2000). The World Health Organization (WHO) reported that the 80% of world population relies chiefly on traditional medicine, which involve of the medicinal plant extracts or their active constituents (Ahmad et al., 1998). The look for new antimicrobial lead is a worldwide investigation, as microorganisms are resistant to caused drugs; thus an appropriate treatment is especially required (Latha and Kannabiran, 2006). Antibiotic resistance has become a serious problem and affects almost every bacterial species. Resistance to multiple antibiotics has developed among many common pathogens, such as staphylococci, pneumococci, Pseudomonas organisms and this problem is steadily increasing worldwide (Olofsson and Cars, 2007). In worldwide around 90-95% of Staphylococcus aureus strains is penicillin resistance, but in Asian countries about 70-80% of the same strains are methicillin resistance, MRSA (Methicillin-resistant Staphylococcus aureus) (Hemaiswarya et al., 2008). Sometimes antibiotics are associated with adverse effects on host, which include depletion of beneficial gut, mucosal microorganisms, immune suppression, hypersensitivity and allergic reaction. Some drug-resistant bacteria has complicated in the treatment of infectious diseases in immune compromised, AIDS (Acquired Immunodeficiency Syndrome) and cancer patients (McGaw et al., 2000). One way to beat this downside of drug resistance is by getting new molecules from natural resources. Plants are known to be produces a variety of compounds and medicinal properties to protect from a wide range of microorganisms including plant pathogens and environmental organisms (Bentley, 1997; Savithramma et al., 2011; Chung et al., 2011). Therefore, alternative antimicrobials are used from botanicals sources which provide flexibility and diversity, for helping to reducing the side effects and their combination used in synergistic or adjuvant therapy for delay the development of resistance (Keith et al., 2005; Konget al., 2008; Koehn and Carter, 2005; Beghyn et al., 2008; Hunter, 2008). Now a day’s several antimicrobial agents are accessible, that is expensive, has toxicity and yielded drug-resistance mutants. Therefore, it must notice price effective and pronto accessible from natural anti-microbial agents, with minimum aspect effects.

Figure 1. Mechanism of action of antimicrobial agents

 

Uses of antimicrobials

Antimicrobials are utilized in human medication, food items, farming, domestic animals and family unit items.

Utilized in human medication

Plant Phyto-constituents such as alkaloids, flavonoids, sesquiterpene lactones, diterpenes, triterpenes are the major source for antimicrobial agents. These normally happening plant products prevent infection antibiotic resistance microorganisms, for example, Bacillus cereus, Escherichia coli, and Staphylococcus aureus (Friedman, 2006).

Utilized in food items

Antimicrobial materials are applied in food products for packaging as well as food contact surfaces. Presently multi day's antimicrobial packages have a few structures, for example, expansion of sachets having unpredictable antimicrobial specialists into bundles; covering or adsorption of antimicrobials agents connected as a polymer surfaces; immobilization of antimicrobials to polymers by particle or covalent linkages and that polymers are utilized inalienably antimicrobial. Presently multi day's nourishment borne microbial sicknesses are emerging. So creative approach is required to deal with conquer microbial defilement in nourishment by the looking after quality, freshness and security of sustenance items (Appendini and Hotchkiss, 2002).

Utilized in farming

Benomyl, chlorothalonil and captan are commonly used in plant diseases (Chen et al., 2001). In agriculture imazalil and triadimefon are used to control fungal infection of fruit and vegetables. Subsequently advancement of common antimicrobial agents from plant source may be a promising approach.

Utilized in domestic animals

Numerous antimicrobial agents, for example, tetracyclins, penicillins, macrolides and lincomycin are affirmed for development advancement of animals. Dietary upgrading feed added substances are joined into the creatures to enhance their development rates (Boxall et al., 2003). Such agriculture utilizing antimicrobial agents additionally affect the treatment of human sickness. To overcome this some natural antimicrobial agents such as Allium, Artemisia, Clematis, Echium and Euphorbia are used in food animals (Viegi et al., 2003). The Salvadora persica L., Colophospermum mopane and Dichrostachys cinerea L. crude extracts are used by local farmers for the treatment of many domestic animals infections (Mudzengi et al., 2017).

Utilized in family unit items

To avert microbial pollution, antimicrobials are utilized in cotton strands and an extensive variety of plastic applications, for example, phones, healing centre furniture, divider covering, flooring, rooftop, film and so forth (Arcy, 2001). The best fungicide was 8-hydroxyquinoline is utilized in business paints (Lim et al., 2008). Presently multi day's normal antimicrobial agents are utilized in family unit items, which is progressively gainful for the earth and human wellbeing.

Natural antimicrobial agents from land sources

Plants Used as Natural Antimicrobial Agents

Many natural antimicrobials agents are found in plant sources e.g. plants, plant-derived compounds and plant by-products. Plant and various plant parts used as natural antimicrobial agents are mentioned in table 1.

Table 1: Antimicrobial activity present in plants

Common name

Scientific name

Family

Parts Used

Target organisms

References

Bael tree

Aegle marmelos

Rutaceae

Leaf, bark &fruit

B. subtilis, S. aureus, K. pneumoniae, P. mirabilis, E. coli, S. Paratyphi A, S. paratyphi B

(Poonkothai and Saravanan, 2008)

Spotted medick

Medicago arabica

Fabaceae

Root &tops

B. cereus, B. subtilis, S. aureus, E. faecalis

(Avato et al., 2006)

Aloe

Aloe barbadensis

Asphodelaceae

Leaf

E. coli, E. faecalis, S. aureus

Athiban et al., 2012)

Apple

Malus sylvestris

Rosaceae

Leaf

E. fecalis, S. aureus

(Hunter and Hull, 1993)

Basil

Ocimum basilicum

Lamiaceae

Leaf

P. aeruginosa, Shigella sp., L. monocytogenes, S. aureus, E. coli

(Kaya et al., 2008)

Aveloz

Euphorbia tirucalli

Euphorbiaceae

Stem

B. subtilis, E. coli, Proteus vulgaris, S. aureus

(Gupta et al., 2013)

Allspice

Pimenta dioica

Myrtaceae

Leaf

Pseudomonas fluorescens, B. megaterium

(Boyd and Benkeblia, 2014)

Black pepper

Piper nigrum

Piperaceae

Berry

B. subtilus, E. faecalis, S. xylosus, S. aureus S. epidermidis, E. coli, K. pneumoniae, S. enterica

(Zarai et al., 2013)

Barberry

Berberis vulgaris

Berberidaceae

Root

E. coli 

(Ghareeb et al., 2013)

Balsam pear

Momordica charantia

Cucurbitaceae

Leaf and fruit

P. aeruginosa, E. coli, S. aureus, K. pneumoniae, S. typhi

(Mwambet, 2009)

Betel pepper

Piper betel

Piperaceae

Leaf

V. cholera, S. aureus, D. pneumonia, K. aerogenes

(Shitut et al., 1999)

Coriander

Coriandrum sativum

Apiaceae

Leaf

S. aureus, Bacillus sp., E. coli, S. typhi, K. pneumonia, P. mirabilis

(Matasyoha et al., 2009)

Caraway

Carum carvi

Umbelliferae

Seed

E. coli

(Gupta et al., 2011)

Clove

Syzygium aromaticum

Myrtaceae

Seed

E. coli, P. aeruginosa, S. aureus

(Ajiboye et al., 2016)

Green tea

Camellia sinensis

Theaceae

 

Leaf

S. mutans, L. Acidophilus, S. aureus, S.  epidermidis,S. typhi, S. typhimurium, S. enteritidis, S. flexneri, S. dysenteriae, V. cholerae

(Anita et al., 2015; Hamilton-miller, 1995)

Garlic

Allium sativum

Amaryllidacee

Bulb

E. coli, S. aureus, B. subtilis

(Viswanathan et al., 2016)

Marigold

Calendula officinalis

Asteraceae

Petal

B. subtulis, S. aureus, E. coli, K. pneumoniae

(Efstratiou et al., 2012)

Gotu kola

Centella asiatica

Apiaceae

 

Whole plant

B cereus, Serratia sp., R mucilaginosa

(Dhiman et al., 2016)

Goldenseal

Hydrastis canadensis

Ranunculaceae

Aerial part

S. aureus

(Ettefagh et al., 2011)

Licorice

Glycyrrhiza glabra

Legumes

Root

S. mutans, S. sanguis, A. viscosus,  E. faecalis, S. aureus,  E. coli

(Sedighiniaet al., 2012)

Turmeric

Curcuma longa

Zingiberaceae

Rhizome

S. aureus, E. coli

(Afrose et al., 2015)

Anantamul

Hemidesmus indicus

Apocynaceae

Root

S. aureus, K. pneumonia, P. aeruginosa

(Gayathriand Kannabiran, 2009)

Papaya

Carica papaya

Caricaceae

Fruit

 

B. cereus, E. coli,  S. faecalis  S. aureus,  P. vulgaris,  S. flexneri

(Dawkins et al., 2003)

Onion

Allium cepa

Amaryllidaceae

Bulb

S. aureus, V. cholerae

(Eltaweel, 2013; Hannan et al., 2010)

Jamun

Syzgium cumini L

Myrtaceae

Leaf

E. faecalis, P. aeruginosa, S. flexneri, S. aureus

(de Oliveira et al., 2007)

Amla

Emblica officinalis

Euphorbiaceae

Fruit

E. coli, E. cloacae, K. pneumoniae

(Kumar et al., 2011)

Neem

Azadirachta indica

Meliaceae

Leaf &bark

V. cholera, B. subtilis, E. coli, S. Typhi, M. luteus, P. vulgeris

(Raut et al., 2014; Koona and Budida, 2011)

Tulsi

Ocimum sanctum

Lamiaceae

Leaf

S. aureus, P. aeruginosa, E. coli, S. typhimurium,  S. saprophytic

(Mishra and Mishra, 2011; Kumar et al., 2011)

Arjun

Terminalia arjuna

Combretaceae

Leaf&bark

S. aureus, Acinetobacter sp., P.  mirabilis, E. coli

(Aneja et al., 2012)

Capicum

Capicum

frutescens

Solanaceae

Fruit

P. aeruginosa

(Soetarno et al., 1997)

Pomegranate

Punica granatum L.

Punicaceae

Fruit

B. megaterium, P. aeruginosa, S. aureus, C. xerosis, E. coli, E. faecalis, M. luteus, K. marxianus, R. rubrum

(Duman et al., 2009)

Chaff flower

Achyranthes

aspera

Amaranthaceae

Root

S. aureus, E. coli, B. Subtilis, P. vulgeris

(Beaulah et al., 2011)

Sessile joyweed

Alternanthera

sessile

Amaranthaceae

Leaf

S. pyogenes, S. typhi, B. subtilis, P. vulgaris

(Johnson et al., 2010)

Cola Nut

Cola acuminate

Sterculiaceae

Steam

S. aureus

(Shama et al., 2011)

Wild Jasmine

Clerodendrum

inerme L

Verbenaceae

Leaf

S. aureus

(Chahal et al., 2010)

Asthma Weed

Euphorbia

hirta

Euphorbiaceae

Whole Plant

S. aureus, E. coli

(Ogueke et al., 2007)

Dahlia

Dahlia pinnata

Asteraceae

Leaf

E. aerogenes, P. aeruginosa

(Bissa et al., 2011)

False Daisy

Eclipta

prostrata L

Asteraceae

Leaf

S. typhi

(Karthikumar et al., 2007)

Champa

Plumeria alba

Apocynaceae

Petal

E. coli

(Syakira and Brenda, 2010)

Rosy Milkweed Vine

Oxystelam

esculentum

Asclepiadaceae

Leaf

E. coli

(Khan et al., 2008)

White Frangipani

Plumeria ruba

Apocynaceae

Leaf

S. epidermidis, E.  coli

(Baghel et al., 2010)

Cherry Ashok

Polyalthia

cerascides

Annonaceae

Steam Bark

Corynebacterium

dipthieriae

(Treeratanapiboon et al., 2011)

Myrobalan

Terminalia

chebula

Combretaceae

Fruit

S. aureus, S. epidermidis, S. typhi, P.  aeruginosa, B. subtillis

(Kannan et al., 2009)

Black catnip

Phyllanthus

amarus

Euphorbiaceae

Leaf

S. typhi

(Oluwafemi and Debiri, 2008)

corn mint

Mentha arvensis

Lamiaceae

Leaf

B. cereus, Serratia sp.

(Dhiman et al., 2016)

St John's wort

Hypericum perforatum

Hypericaceae

aerial parts

A. baumanii, E. coli, E. faecalis, K. oxytoca, K. pneumoniae, P. aeruginosa, S. aureus

(Egamberdieva et al., 2017)

Plant-derived Compounds

The plant-derived antimicrobial mainly found in herbs and their spices (Cueva et al., 2010; Negi, 2012). The antimicrobial activity of these compounds mainly based on their structural characteristics. Major groups plant compounds that are responsible for antimicrobial activity e.g. phenolics, phenolic acids, quinones, saponins, flavonoids, tannins, coumarins, terpenoids, and alkaloids (Ciocan and Bara, 2007; Lai and Roy, 2004).

Plant By-products

During food processing, large amount of by-products are generated. By-products of fruits and vegetables (Table 2) are potentially good sources of minerals and organic acid that have a wide range of antimicrobial properties (Chanda et al., 2010).

Table 2. Plant by-products used as antimicrobials

By-products

Major component

Target organisms

References

Green tea waste

Tannins

S. aureus, E. coli

(Sung et al., 2012)

Coconut husk

Phenolics and tannins

L. monocytogenes, S. aureus, V. cholera

(Wonghirundecha and Sumpavapol, 2012)

Potato peels

Chlorogenic, caffeic, gallic, protocatechuic acids

E. coli, S. typhimurium

(Sotillo et al., 1998)

Tomato seeds

Fatty acids, carotenoids, saponins,phenolic compounds

S. aureus, S. epidermidis, M. luteus, E. faecalis, B. cereus

(Taveira et al., 2010)

Apple peels

Polyphenolic compounds

S. aureus, P. fluorescens

(Agourram et al., 2013)

 

Antimicrobial Agents from Animal Sources

Many natural antimicrobials agents are found in animal sources mentioned in Table 3.

Table 3. Antimicrobial agents obtain from animal sources

Antimicrobial agent

Major source

Target organisms

References

Defensins

Mammalian epithelial cells of chickens, turkeys

Gram-positive and Gram-negative bacteria

(Tiwari et al., 2009)

Chitosan

Exoskeletons of Crustaceans & arthropods

E. coli, S. aureus, Pseudomonas sp., E. coli, L. monocytogenes

(Tiwari et al., 2009; Leleu et al., 2011)

Casein and whey

Milk protein

Enterobacter sakazakii,

E. coli, S. aureus, L. monocytogenes, S. typhimurium, B. subtilis

(Hayes et al., 2006; Korhonen andRokka, 2010)

Lactoferrin

Milk

 

E. coli, L. monocytogenes,

Salmonella sp., Pesudomonas sp.

(Lonnerdal, 2011; Perez et al., 2012)

Ovotransferrin

Egg albumin

 

Micrococcus, Bacillus spp., E. coli,L. monocytogenes, S. aureus

(Perez et al., 2012; Ko et al., 2008; Ko et al, 2009)

Lactoperoxidase

Raw milk, colostrum, saliva and other biological secretions

Salmonella sp., E. coli, S. aureus, L. monocytogenes,

Y.entericolitica

(Perez et al., 2012)

Pleurocidin

Myeloid cells and

mucosal tissues of

many vertebrates

and invertebrates

L. monocytogenes, E. coli

(Burrowes et al., 2004; Jung et al., 2007)

Lysozyme

Hens' eggs,

mammalian milk

C. tyrobutyricum, Bacillus sp., Micrococcus sp.,

L. monocytogenes

(Perez et al., 2012; Juneja et al., 2012)

Antimicrobial Agents from Marine Source

Many natural antimicrobials agents are found in animal sources mentioned in Table 4.

Table 4. Antimicrobial agents from marine source

Classification

Scientific name

Family

Target organisms

References

Algae

Laurencia papillosa

Rhodomelaceae

E. coli, P. aerugenosa, K. pneumoniae, & Shigella flexineri

(Kavita et al., 2013)

Cnidarians

 

Carijoa sp.

Clavulariidae

S. albus, S. aureus, E. coli, P. putida, Nocardia brasiliensis, & Vibrio parahaemolyticus

(Zhao et al., 2013)

Melitodes squamata

Melithaea

Bacillus subtilis & M. luteus

(Huang et al., 2012)

Sponges

 

 

 

 

 

 

Amphimedon sp.

Niphatidae

S. aureus

(Kubota et al., 2013)

Callyspongia aerizusa

Callyspongiidae

S. aureus, B. subtilis, and E. coli

(Ibrahim et al., 2010)

Suberea ianthelliformis

Aplysinellidae

P. aeruginosa

(Xu et al., 2012)

Stylissa caribica

Dictyonellidae

P. aeruginosa, K. pneumonia

(Dahiya and Gautam, 2010)

Clathria compressa

Microcionidae

S. aureus, MRSA, and VRSA

(Gupta et al., 2012)

Petromica citrina

Desmanthidae

S. aureus, S. epidermidis,

E. faecalis, M. fortuitum,Neisseria gonorrhoeae

(Marinho et al., 2012)

Agelas mauritiana

Agelasidae

MRSA and S. aureus

(Yang et al., 2012)

Arthropods

Scylla paramamosain

Portunidae

C. glutamicum, B. subtilis, M. lysodeikticus, M. luteus, E. coli, S. flexneri, V. harveyi, V. alginolyticus, V.

parahaemolyticus, P. aeruginosa, P.

stutzeri, P. fluorescens

(Liu et al., 2012)

 

Portunus trituberculatus

Portunidae

V. alginolyticus, Edwardsiella tarda, P.

Aeruginosa & S. aureus

(Liu et al., 2013)

 

Scylla paramamosain

Portunidae

Aeromonas hydrophila, P. fluorescens, S.  flexneri, E. coli, V.  harveyi, M. leteus, S. aureus, B. subtilis, B. cereus, S. epidermidis

(Peng et al., 2012)

Echinoderms

Apostichopus japonicus

Stichopodidae

E. coli

(La et al., 2012)

Mollusks

Hexaplex trunculus

Muricidae

M. luteus, S. pneumonia,

C. diphteriae, E.  Faecalis, E. cloacae, B. subtilis, B. cereus, S. aureus & S. epidermidis

(Zarai et al., 2012)

 

Cenchritis muricatus

 

Littorinidae

S. aureus & E. coli

(Lopez-Abarrategui et al., 2012)

 

Mytilus coruscus

Mytilidae

E. coli & S. lutea

(Yang et al., 2011)

 

Mytilus coruscus

Mytilidae

E. coli, V. parahaemolyticus, P.

aeruginosa, P. vulgaris, V. harveyi, B. subtilis, S. aureus, S. luteus, and

B. megaterium

(Liao et al., 2013)

 

Chlamys farreri

Pectinidae

E. coli

(Zhou et al., 2012)

Reptiles

Caretta caretta

Cheloniidae

E. coli and S. typhimurium

(Chattopadhyay et al., 2006)

Fish

Gadus morhua

Gadidae

Moritella viscose, Yersinia ruckeri, V. anguillarum, Aeromonas hydrophila,

Aeromonas salmonicida, P. aeruginosa,

E. coli, B. megaterium,

Lactobacillus sp.

(Broekman et al., 2011)

 

Rachycentron canadum

‎Rachycentridae

E. coli

(Ngai and Ng, 2007)

 

Branchiostoma belcheritsingtauense

 

Branchiostomidae

E. coli

(Zhang et al., 2005)

 

Cynoglossus semilaevis

Cynoglossidae

Edwardsiella tarda, V.  anguillarum, E. coli,

M. luteus, S. iniae

(Li et al., 2013)

 

Sebastes schlegelii

Sebastidae

A. salmonicida, A. hydrophila,

Photobacterium damselae, V. parahaemolyticus

(Kitani et al., 2013)

 

Cynoglossus semilaevis

Cynoglossidae

V.  anguillarum

(Lu et al., 2014)

 

Oplegnathus fasciatus

Oplegnathidae

E. coli, E. tarda, S. iniae

(Kasthuri et al., 2013)

 

Scophthalmus maximus

Scophthalmidae

E. tarda, V. anguillarum, M. luteus,

and S. aureus

(Zhang et al., 2014; Yu et al., 2013)

 

Epinephelus coioides

Serranidae

P. stutzeri, S. aureus, MRSA

(Qi et al., 2013; Huang et al., 2013)

 

Pleuronectes americanus

 

Pleuronectidae

S. aureus, E. faecium,

P. acnes, E. Coli &P. aeruginosa

(Choi and Lee, 2012)

Conclusion

Since, there is an increased demand for antibiotic so it is necessary to make free of synthetic chemicals as well as semi-synthetic for the well-being of the living systems. Natural products can be used for the prevention and cost effective in place of synthetic and semi-synthetic antimicrobial drugs to minimize the side effect. Therefore, further investigation is required to determine the optimum levels of antimicrobials that can be safely applied in living systems.

Therefore, there continues to be a need to develop a more practical and effective delivery system for these antimicrobial compounds in food products. Furthermore, safety and health risks of natural antimicrobials need to be assessed before future applications in food products.

Acknowledgement

The authors are grateful to Dr. Mrinmoy Nag, Department of Pharmaceutical Science, Bengal College of Pharmaceutical Sciences and Research, Durgapur for his support while conducting this work.

Conflicts of interest

The authors declare that they have no conflict of interests.

References

Afrose R, Saha SK, Banu LA, Ahmed AU, Shahidullah AS, Gani A, Sultana S, Kabir MR, Ali MY. 2015. Antibacterial effect of Curcuma longa (Turmeric) against Staphylococcus aureus and Escherichia coli. Mymensingh Medical Journal 24 (3): 506-515.

Agourram A, Ghirardello D, Rantsiou K, Zeppa G, Belviso S, Romane A, Oufdou K, Giordano M. 2013. Phenolic content, antioxidant potential and antimicrobial activities of fruit and vegetable by-product extracts. International Journal of Food Properties 16 (5): 1092-1104.

Ahmad I, Mehmood Z, Mohammad F.1998. Screening of some Indian medicinal plants for their antimicrobial properties. Journal of Ethnopharmacology 62: 183-193.

Ajiboye TO, Mohammed AO, Bello SA, Yusuf II, Ibitoye OB, Muritala HF. Onajobi I.B. 2016. Antibacterial activity of Syzygium aromaticum seed: Studies on oxidative stress biomarkers and membrane permeability. Microbial Pathogenesis 95: 208-215.

Aneja KR, Sharma C, Joshi R. 2012. Antimicrobial activity of Terminalia arjuna Wight &Arn.: An ethnomedicinal plant against pathogens causing ear infection. Brazilian Journal of Otorhinolaryngology 78 (1): 68-74.

Anita P, Sivasamy SPD, Kumar MI, Balan N, Ethiraj S. 2015. In vitro antibacterial activity of Camellia sinensis extract against cariogenic microorganisms. Journal of Basic and Clinical Pharmacy 6 (1): 35-39.

Appendini P, Hotchkiss JH. 2002. Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies 3: 113-126.

Athiban PP, Borthakur BJ, Swathika B. 2012.Evaluation of antimicrobial efficacy of Aloe vera and its effectiveness in decontaminating gutta percha cones. Journal of conservative dentistry 15 (3): 246-248.

Avato P, Rossella B, Aldo T, Cesare V, Antonio R, Zbigniew B, Marian J. 2006. Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship. Phytotherapy Research 20 (6): 454-457.

Baghel AS, Mishra CK, Rani A, Sasmal D, Nema RK. 2010. Antibacterial activity of Plumeria rubra Linn plant extract. Journal of Chemical and Pharmaceutical Research 2 (6): 435-440.

Beaulah AG, Sadiq AM, Santhi RJ. 2011. Antioxidant and antibacterial activity of Achyranthes aspera: an in vitro study. Der Pharma Chemica 3 (5): 255-262.

Beghyn T, Deprez-Poulain R, Willand N, Folleas B, Deprez B. 2008. Natural compounds: leads or ideas? Bioinspired molecules for drug discovery. Chemical Biology and Drug Design 72: 3-15.

Bentley R. 1997. Microbial secondary metabolites play important roles in medicine; prospects for discovery of new drugs. Perspectives in Biology and Medicine 40: 364-394.

Bissa S, Bohra A, Bohra A. 2011. Screening of Dahlia pinnata for its antimicrobial activity. Journal of Biological Research 1: 51-55.

Boxall ABA, FoggLA, Kay P, Blackwell PA, Pemberton EJ, Croxford A. 2003.Prioritisation of veterinary medicines in the UK environment. Toxicology Letters 142: 207-218.

Boyd FAH, Benkeblia N. 2014. In vitro evaluation of antimicrobial activity of crude extracts of Pimenta dioica l. (Merr.). Acta Horticulturae 1047, 199-205.

Broekman DC, Zenz A, Gudmundsdottir BK, Lohner K, Maier VH, Gudmundsson GH. 2011. Functional characterization of cod Cath, the mature cathelicid in antimicrobial peptide from Atlantic cod (Gadus morhua). Peptides 32 (10): 2044-2051.

Burrowes O, Hadjicharalambous C, Diamond G, LEE TC. 2004. Evaluation of antimicrobial spectrum and cytotoxic activity of pleurocidin for food applications. Journal of Food Science 69 (3): FMS 66-FMS71.

Chahal JK, Sarin R, Malwal M. 2010. Efficacy of Clerodendrum inerme L. (Garden quinine) against some human pathogenic strains. International Journal of Pharma and Bio Sciences 1 (4): 219-223.

Chanda S, Baravalia Y, Kaneria M, Rakholiya K. 2010. Fruit and vegetable peels-strong natural source of antimicrobics. In current Research, technology and education topics in applied Microbiology and Microbial Biotechnology 444-450.

Chattopadhyay S, Sinha NK, Banerjee S, Roy D, Chattopadhyay D, Roy S. 2006. Small cationic protein from a marine turtle has betadefensin- like fold and antibacterial and antiviral activity. Proteins 64 (2): 524–553.

Chen SK, Eedwards CA, Subler S. 2001. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology & Biochemistry 33: 971-1980.

Choi H, Lee DG.2012. Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity. Biochimica et Biophysica Acta 1820 (12):1831–1838.

Chung PY, Navaratnam P, Chung LY. 2011. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Annals of Clinical Microbiology and Antimicrobials 10: 1-6.

Ciocan ID, Bara I. 2007. Plant products as antimicrobial agents.Universitatii Ale S¸ tiint¸ ifice Analele Alexandru Ioan Cuza. 151-156.

Cueva C, Moreno-Arribas M, Martín-Alvarez PJ, Bills G, Vicente MF, Basilio A,Rivas CL, Requena T, Rodríguez JM, Bartolomé B. 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in microbiology 161(5): 372-382.

Dahiya R, Gautam H.2010. Total synthesis and antimicrobial activity of a natural cycloheptapeptide of marine origin. Marine Drugs 8 (8): 2384–2394.

Dawkins G, Hewitt H, Wint Y, Obiefuna PC, Wint B. 2003. Antibacterial effects of Carica papaya fruit on common wound organisms. West Indian Medical Journal 52 (4): 290-292.

de Oliveira GF, Cardoso FNAJ, da Silva FAA, Gomes MCH, Bastos JK, Cunha WR, de Andrade  Silva ML.2007. Antimicrobial activity of Syzygium cumini (Myrtaceae) leaves extract. Brazilian Journal of Microbiology 38 (2): 381-384.

Dhiman R, Aggarwal N, Aneja KR, Kaur M. 2016. In Vitro antimicrobial activity of spices and medicinal herbs against selected microbes associated with juices. International Journal of Microbiology 1-9.

Duman AD, Ozgen M, Dayisoylu KS, Erbil N, Durgac C. 2009. Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules14: 1808-1817.

Efstratiou E, Hussain AI, Nigam PS, Moore JE, Ayub MA, Rao JR. 2012. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complementary Therapies in Clinical Practice 18 (3), 173-176.

Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G. 2017. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Frontiers in Microbiology 8: 1-8.

Eltaweel M. 2013. Assessment of antimicrobial activity of onion extract (Allium cepa) on Staphylococcus aureus; in vitro study. International Conference on Chemical, Agricultural and Medical Sciences 29-30.

Ettefagh KA, Burns JT, Junio HA, Kaatz GW, Cech NB. 2011. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Medica 77 (8): 835-840.

Friedman M. 2006. Antibiotic activities of plant compounds against non-resistant and antibiotic resistant food borne human pathogens. In: Juneja VK, Cherry JP, Tunic MS, ed. Advance in Microbial Food Safety, American Chemical Soceity. Washington DC: USA167-183.

Gayathri M, Kannabiran K. 2009. Antimicrobial activity of Hemidesmus indicus, Ficus bengalensis and Pterocarpus marsupium roxb. Indian Journal of Pharmaceutical Sciences 71 (5): 578-581.

Ghareeb DA, Abd El-Wahab AE, Sarhan EEM, Abu-Serie MM, Demellawy MAE. 2013. Biological assessment of Berberis vulgaris and its active constituent, berberine: antibacterial, antifungal and anti-hepatitis C virus (HCV) effect. Journal of Medicinal Plant Research 7 (21): 1529-1536.

Gupta A, Dubey M, Parmar M, Mahajan S, Sharma R. 2011. Evaluation of antimicrobial activity of Carum carvi (Seeds) extract against E. coli and Aspergillus niger. Drug Invention Today, 3 (9): 211-213.

Gupta N, Vishnoi G, WalA, Wal P. 2013. Medicinal value of Euphorbia tirucalli. Systematic Reviews in Pharmacy 4 (1): 40-46.

Gupta P, Sharma U, Schulz TC, McLean AB, Robins AJ, West LM. 2012. Bicyclic C21 terpenoids from the marine sponge Clathria compressa. Journal of Natural Products 75 (6): 1223–1227.

Hamilton-miller JMT. 1995. Antimicrobial Properties of Tea (Camellia sinensis L.). Antimicrobial Agents and Chemotherapy 39 (11): 2375–2377.

Hannan A, Humayun T, Hussain MB, Yasir M, Sikandar S. 2010. In vitro antibacterial activity of onion (Allium cepa) against clinical isolates of Vibrio cholerae. Journal of Ayub Medical College, Abbottabad 22 (2): 160-163.

Hayes M, Ross R, Fitzgerald G, Hill C, Stanton C. 2006. Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology 72 (3): 2260-2264.

Hemaiswarya S, Kruthiventi AK, Doble M. 2008. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15: 639-652.

Huang HN, Rajanbabu V, Pan CY, ChanYL, Wu CJ, Chen JY. 2013. Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 34 (38):10319–10327.

Huang LS, He F, Huang H, Zhang XY, Qi SH. 2012. Carbamate derivatives and sesqui terpenoids from the South china sea gorgonian Melitodes squamata. Beilstein Journal of Organic Chemistry 8: 170-176.

Hunter MD, Hull LA. 1993. Variation in concentrations of phloridzin and phloretin in apple foliage. Phytochemistry 34: 1251-1254.

Hunter P. 2008. Harnessing nature’s wisdom. Turning to nature for inspiration and avoiding her follies. EMBO Reports 9: 838-840.

Ibrahim SRM, Min CC, Teuscher F, Ebel R, Kakoschke C, Lin WH, Wray V, Edrada-Ebel R, Proksch P. 2010. Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorganic & Medicinal Chemistry 18 (14): 4947-4956.

Johnson M, Wesely EG, Selvan N, Kavitha MS. 2010. In vivoand in vitro anti-bacterial efficacy of Alternanthera sessilis (Linn.). International Journal of Pharmaceutical Research and Development 2 (10): 72-79.

Juneja VK, Dwivedi HP, Yan X. 2012. Novel natural food antimicrobials. Annual Review of Food Science and Technology 3: 381-403.

Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, LeeDG. 2007. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochimica et Biophysica Acta - Biomembranes 1768 (6): 1400-1405.

Kannan P, Ramadevi SR, Hopper W. 2009. Antibacterial activity of Terminalia chebula fruit extract. African Journal of. Microbiology Research 4: 180-184.

Karthikumar S, Vigneswari K, Jegatheesan K. 2007. Screening of antibacterial and antioxidant activities of leaves of Eclipta prostrate (L). Scientific Research and Essays 2 (4): 101-104.

Kasthuri SR, Wan Q, Umasuthan N, Bathige SDNK, Lim BS, Jung HB, Lee J, Whang I. 2013. Genomic characterization, expression analysis, and antimicrobial function of a glyrichin homologue from rock bream, Oplegnathus fasciatus. Fish and Shellfish Immunology 35 (5):1406-1415.

Kavita K, Singh VK, Jha B. 2013. 24-Branched Delta5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiological Research 169 (4): 301-306.

Kaya I, Yiğit N, Benli M. 2008. Antimicrobial activity of various extracts of Ocimum basilicum l. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. African Journal of Traditional 5 (4): 363-369.

Keith CT, Borisy AA, Stockwell BR. 2005. Multicomponent therapeutics for networked systems. Nature Reviews Drug Discovery 4: 71-78.

Khan AV, Ahmad R, Khan AA, Shukla I. 2008. Antibacterial activity of Oxystelma esculentum leaf extracts against some hospital isolated human pathogenic bacterial strains. Journal of Herbal Medicine and Toxicology 2 (2): 67-70.

Kitani Y, Toyooka K, Endo M, Ishizaki S, Nagashima Y. 2013. Intra tissue localization of an antibacterial L-amino acid oxidase in the rockfish Sebastes schlegeli. Developmental and Comparative Immunology 39 (4): 456-459.

Ko K, Mendonca A, Ahn D. 2008. Influence of zinc, sodium bicarbonate, and citric acid on the antibacterial activity of ovotransferrin against Escherichia coli O157:H7 and Listeria monocytogenes in model systems and ham. Poultry Science 87 (12): 2660-2670.

Ko K, Mendoncam A, Ismail H, Ahn D. 2009. Ethylenediaminetetra-acetate and lysozyme improves antimicrobial activities of ovotransferrin against Escherichia coli O157:H7. Poultry Science 88 (2): 406-414.

Koehn FE, Carter GT. 2005. The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery 4, 206-220.

Kong DX, Li XJ, Zhang HY. 2008. Where is the hope for drug discovery? Let history tell the future. Drug Discovery Today 14: 115-119.

Koona S, Budida S. 2011. Antibacterial potential of the extracts of the leaves of Azadirachta indica Linn. Notulae Scientia Biologicae 3 (1): 65-69.

Korhonen HJ, Rokka S. 2010. Properties and applications of antimicrobial proteins and peptides from milk and eggs. In Bioactive food proteins and peptides: Applications in human health 49.

Kubota T, Kamijyo Y, Takahashi-Nakaguchi A, Fromont J, Gonoi T, Kobayashi J. 2013. Zamamiphidin A, a new manzamine related alkaloid from an Okinawan marine sponge Amphimedon sp. Organic Letters 15 (3): 610-612.

Kumar A, Tantry BA, Rahiman S, Gupta U. 2011. Comparative study of antimicrobial activity and phytochemical analysis of methanolic and aqueous extracts of the fruit of Emblica officinalis against pathogenic bacteria. Journal of Traditional Chinese Medicine (313): 246-250.

La MP, Li C, Li L, Sun P, Tang H, Liu BS. 2012. New bioactive sulfated alkenes from the sea cucumber Apostichopus japonicus. Chemistry & Biodiversity 9 (6): 1166-1171.

Lai P, Roy J. 2004. Antimicrobial and chemo preventive properties of herbs and spices. Current Medicinal Chemistry 11(11): 1451-1460.

Latha PS, Kannabiran K. 2006. Antimicrobial activity and phytochemicals of Solanum trilobatum Linn. African Journal of Biotechnology 5: 2402-2404.

Leleu S, Herman L, Heyndrickx M, De Reu K, Michiels C, De Baerdemaeker J, Messens W. 2011. Effects on Salmonella shell contamination and trans-shell penetration of coating hens' eggs with chitosan. International Journal of Food Microbiology 145 (1): 43-48.

Li MF, Chen C, Li J, Sun L. 2013. The C-reactive protein of tongue sole Cynoglossus semilaevis is an acute phase protein that interacts with bacterial pathogens and stimulates the antibacterial activity of peripheral blood leukocytes. Fish and Shellfish Immunology 34 (2): 623-631.

Liao Z, Wang XC, Liu HH, Fan MH, Sun JJ, Shen W. 2013. Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus. Fish and Shellfish Immunology 34 (2), 610-616.

Lim G, Tan TK, Toh A. 1989. The fungal problem in buildings in the humid tropics. International Biodeterioration and Biodegradation 25: 27-37.

Liu HP, Chen RY, Zhang QX, Wang QY, Li CR, Peng H, Cai L, Zheng CQ, Wang KJ. 2012. Characterization of two isoforms of antiliopolysacchride factors (Sp-ALFs) from the mud crab Scylla paramamosain. Fish and Shellfish Immunology 33 (1): 1-10.

 Liu Y, Cui Z, Li X, Song C, Shi G, Wang C. 2013. Molecular cloning, genomic structure and antimicrobial activity of PtALF7, a unique isoform of anti-lipopolysaccharide factor from the swimming crab Portunus trituberculatus. Fish and Shellfish Immunology 34 (2), 652-659.

Lonnerdal B. 2011. Biological effects of novel bovine milk fractions. Nestle nutrition workshop Series. Paediatric Programme 67: 41-54.

Lopez-Abarrategui C, Alba A, Lima LA,Maria-Neto S, Vasconcelos IM, Oliveira JT, Dias SC, Otero-Gonzalez AJ, Franco OL. 2012. Screening of antimicrobials from Caribbean sea animals and isolation of bactericidal proteins from the littoral mollusk Cenchritis muricatus. Current Microbiology 64 (5):  501-505.

Lu Y, Wang Q, Liu Y, Shao C, Chen S, Sha Z. 2014. Gene cloning and expression analysis of IRF1 in half-smooth tongue sole (Cynoglossus semilaevis). Molecular Biology Reports 41(6):4093-4101.

Marinho PR, SimasNK, Kuster RM,Duarte RS, Fracalanzza SE, Ferreira DF, Romanos MT, Muricy G, Giambiagi-Demarval M, Laport MS. 2012. Antibacterial activity and cytotoxicity analysis of halistanol trisulphate from marine sponge Petromica citrina. Journal of Antimicrobial Chemotherapy 67 (10): 2396–2400.

Matasyoha JC, Maiyob ZC, Ngureb RM, Chepkorir R. 2009. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chemistry 113 (2): 526-529.

McGaw LJ, Jager AK, Staden JV. 2000. Antibacterial, anthelmintic and anti-amoebic activity in South African medicinal plants. Journal of Ethnopharmacology 72: 247-263.

Mishra P, Mishra S. 2011. Study of antibacterial activity of Ocimum sanctum extract against gram positive and gram negative bacteria. Journal of Food Technology 6 (4): 336-341.

Mudzengi CP, Murwira A, Tivapasi M, Murungweni C, Burumu JV, Halimani T. 2017. Antibacterial activity of aqueous and methanol extracts of selected species used in livestock health management.  Pharmaceutical Biology 55 (1): 1054-1060.

Mwambete KD. 2009. The in vitro antimicrobial activity of fruit and leaf crude extracts of Momordica charantia: A Tanzania medicinal plant. African Journal of Health Sciences 9 (1): 34-39.

Negi PS. 2012. Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. International Journal of Food Microbiology 156 (1): 7-17.

Ngai PH, Ng TB. 2007. A mannose-specific tetrameric lectin with mitogenic and antibacterial activities from the ovary of a teleost, the cobia (Rachycentron canadum). Applied Microbiology and Biotechnology 74 (2), 433–438.

Ogueke CC, Ogbulie JN, Okoli IC, Anyanwu BN. 2007. Antibacterial activities and toxicological potentials of crude ethanolic extracts of Euphorbia hirta. Journal of American Science 3 (3): 11-16.

Olofsson SK, Cars O. 2007. Optimizing drug exposure to minimize selection of antibiotic resistance. Clinical Infectious Diseases 45: 129-136.

Oluwafemi F, Debiri F. 2008. Antimicrobial effect of Phyllanthus amarus and Parquetina nigrescens on Salmonella typhi. African Journal of biomedical Research 11: 215-219.

Peng H, Liu HP, Chen B, Hao H, Wang KJ. 2012. Optimized production of scygonadin in Pichia pastoris and analysis of its antimicrobial and antiviral activities. Protein Expression and Purification 82 (1): 37–44.

Perez KL, Taylor TM, Taormina PJ. 2012. Competitive research and development on antimicrobials and food preservatives. Microbiological Research and Development for the Food Industry 109.

Poonkothai M, Saravanan M. 2008. Antibacterial activity of Aegle marmelos against leaf, bark and fruit extracts. Ancient Science of Life 17: 15-18.

Qi J, Shao CL, Li ZY, Gan LS, Fu XM, Bian WT, Zhao HY, Wang CY. 2013. Isocoumarin derivatives and benzofurans from a sponge derived Penicillium sp. fungus. Journal of Natural Products 76 (4): 571-579.

Raut RR, Sawant AR, Jamge BB. 2014. Antimicrobial activity of Azadirachta indica (Neem) against pathogenic microorganisms. Journal of Academia and Industrial Research 3 (7): 327-329.

SavithrammaN, Linga RM, Suhrulatha D. 2011. Screening of medicinal plants for secondary metabolites. Middle-East Journal of Scientific Research 8: 579–584.

Sedighinia F, Afshar AS, Soleimanpour S, Zarif R, Asili J, Ghazvini K. 2012. Antibacterial activity of Glycyrrhiza glabra against oral pathogens: an in vitro study. Avicenna Journal of Phytomedicine 2 (3): 118-124.

Shama IYA, Ahmed ANY, Wala MMS, Warda SA. 2011. Antimicrobial activity of the masticatory Cola acuminate Nut (Gooro). Current Research Journal of Biological Sciences 3 (4), 357-362.

Shitut S, Pandit V, Mehta BK. 1999. The antimicrobial efficiency of Piper betle Linn leaf (stalk) against human pathogenic bacteria and phytopathogenic fungi. Central European Journal of Public Health 7 (3): 137-139.

Soetarno S, Sukrasn O, Yulinah E. 1997. Antimicrobial activities of the ethanol extracts of capsicum fruits with different levels of pungency. Journal of Management Studies 2 (2): 57-63.

Sotillo DR, Hadley M, Wolf-Hall C. 1998. Potato peel extract a non-mutagenic antioxidant with potential antimicrobial activity. Journal of Food Science 63 (5): 907-910.

Sung SH, Kim KH, Jeon BT, Cheong SH, Park JH, Kim DH, Kweon HJ, Moon SH. 2012. Antibacterial and antioxidant activities of tannins extracted from agricultural by-products. Journal of Medicinal Plant Research 6 (15): 3072-3079.

Syakira MH, Brenda L. 2010. Antibacterial capacity of Plumeria alba petals. World Academy of Science, Engineering and Technology 68: 1463-1466.

Taveira M, Silva LR, Vale-Silva LA, Pinto E, Valentaeo P, Ferreres F, de Pinho PG, Andrade PB. 2010. Lycopersicon esculentum seeds: an industrial byproduct as an antimicrobial agent. ournal of Agricultural and Food Chemistry 58 (17): 9529-9536.

Arcy N. 2001. Antimicrobials in plastics: a global review. Plastics, Additives and Compounding 12-13.

Tiwari BK, Valdramidis VP, O'Donnell CP, Muthukumarappan K, Bourke P, Cullen P. 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57 (14): 5987-6000.

Treeratanapiboon L, Worachartcheewan A, Suksrichavalit T, Kiatfuengfoo R, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. 2011. Bioactive 4-Hydroxycinnamide and bioactivities of Polyalthia cerasoides. EXCLI Journal 10: 16-22.

Viegi L, Pieroni A, Guarrera PM, Vangelisti R. 2003. A review of plants used in folk veterinary medicine in Italy as basis for a databank. Journal of Ethnopharmacology 89: 221-244.

Viswanathan V, Phadatare AG, Mukne A. 2016. Antimycobacterial and antibacterial activity of Allium sativum Bulbs. Indian Journal of Pharmaceutical Sciences 76 (3): 256-261.

Wonghirundecha S, Sumpavapol P. 2012. Antibacterial activity of selected plant by-products against food-borne pathogenic bacteria. International Conference on Nutrition and Food Sciences, IPCBEE 39:116-120.

Xu M, Davis RA, Feng Y, Sykes ML, Shelper T, Avery VM, Camp D, Quinn RJ. 2012. Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. Journal of Natural Products 75 (5): 1001-1005.

Yang F, Hamann MT, Zou Y, ZhangMY, Gong XB, Xiao JR, ChenWS, Lin HW. 2012. Antimicrobial metabolites from the Paracel Islands sponge Agelas mauritiana. Journal of Natural Products 75 (4): 774-778.

Yang L, Fan M, Liu X, Wu M, Shi G, Liao Z. 2011. Solution structure and antibacterial mechanism of two synthetic antimicrobial peptides. Sheng Wu Gong Cheng Xue Bao 27 (11): 1564-1573.

Yu LP, Sun BG, Li J, Sun L. 2013. Characterization of a c-type lysozyme of Scophthalmus maximus: expression, activity, and antibacterial effect. Fish and Shellfish Immunology 34 (1): 46–54.

Zarai Z, Boujelbene E, Salem NB, Gargouri Y, Sayari A. 2013. Antioxidant and antimicrobial activities of various solvent extracts piperine and piperic acid from Piper nigrum. LWT Food Science and Technology 50 (2): 634-641.

Zarai Z, Gharsallah H, Hammami A, Mejdoub H, Bezzine S, Gargouri YT. 2012. Antibacterial, anti-chlamydial, and cytotoxic activities of a marine snail (Hexaplex trunculus) phospholipase A2: an in vitro study. Applied Biochemistry and Biotechnology 168 (4): 877-886.

Zhang J, Yu LP, Li MF, Sun L.2014. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish and Shellfish Immunology 38 (1): 127-134.

Zhang S, Sun Y, Pang Q, Shi X.2005. Hemagglutinating and antibacterial activities of vitellogenin. Fish and Shellfish Immunology 19 (1): 93-95.

Zhao HY, Shao CL, Li ZY, Han L, Cao F, Wang CY. 2013. Bioactive pregnane steroids from a South China sea gorgonian Carijoa sp. Molecules 18 (3): 3458-3466.

Zhou Z, Ni D, Wang M, Wang L, Shi X, Yue F, Liu R, Song L. 2012.The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri. Fish and Shellfish Immunology 33 (2), 375-381.

Manuscript Management System
Submit Article Subscribe Most Popular Articles Join as Reviewer Email Alerts Open Access