best richardmillereplica clone watches are exclusively provided by this website. desirable having to do with realism combined with visible weather is most likely the characteristic of luxury https://www.patekphilippe.to. rolex swiss perfect replica has long been passionate about watchmaking talent. high quality www.youngsexdoll.com to face our world while on an start up thinking. reallydiamond.com on the best replica site.
Rakesh Kumar Paul1, Dibyendu Dutta1, Dipesh Chakraborty2, Arabinda Nayak1, Prabir Kumar Dutta1, Mrinmoy Nag1*
1Department of Pharmaceutical Science, Bengal College of Pharmaceutical Sciences & Research, Durgapur-711212, India.
2Department of Pharmaceutical Science, Dr. B.C.Roy College of Pharmacy& Allied Health Sciences,Durgapur-711212, India.
*Address for Corresponding author
Dr. Mrinmoy Nag
Assistant professor
Bengal College of Pharmaceutical Sciences and Research
Durgapur 711232, India
Abstract
The use of natural antimicrobial agents in surrounding area has achieved great importance in the field of pharmaceutical industry. This is due to great challenge against microbes which causes pathogenic resistance by the mishandling and misuse of antibiotics. Now a day’s many synthetic and semi synthetic antibiotics are available which has lot of side effect as well as very expensive. So, alternative natural antimicrobial agents search from natural sources with minimum side effect which prompt the safety and quality of pharmaceutical products. Plant has storage of many secondary metabolites which plays crucial roles in microbial infection. Likewise plants animal’s products also having antimicrobial agents like Exoskeletons, Milk, and Egg Albumin etc. A large collection of bio-molecules from marine organisms also showed a great interest to compete with pathogenic microbes. This review article represents the antibacterial activity of natural products including plants and animals which are derived from land and marine sources.
Keywords: Antimicrobial, natural, land sources, marine sources
Introduction
In many developing countries large portion of population, depends on the traditional system of medicine to treat variety of disease (McGaw et al., 2000). The World Health Organization (WHO) reported that the 80% of world population relies chiefly on traditional medicine, which involve of the medicinal plant extracts or their active constituents (Ahmad et al., 1998). The look for new antimicrobial lead is a worldwide investigation, as microorganisms are resistant to caused drugs; thus an appropriate treatment is especially required (Latha and Kannabiran, 2006). Antibiotic resistance has become a serious problem and affects almost every bacterial species. Resistance to multiple antibiotics has developed among many common pathogens, such as staphylococci, pneumococci, Pseudomonas organisms and this problem is steadily increasing worldwide (Olofsson and Cars, 2007). In worldwide around 90-95% of Staphylococcus aureus strains is penicillin resistance, but in Asian countries about 70-80% of the same strains are methicillin resistance, MRSA (Methicillin-resistant Staphylococcus aureus) (Hemaiswarya et al., 2008). Sometimes antibiotics are associated with adverse effects on host, which include depletion of beneficial gut, mucosal microorganisms, immune suppression, hypersensitivity and allergic reaction. Some drug-resistant bacteria has complicated in the treatment of infectious diseases in immune compromised, AIDS (Acquired Immunodeficiency Syndrome) and cancer patients (McGaw et al., 2000). One way to beat this downside of drug resistance is by getting new molecules from natural resources. Plants are known to be produces a variety of compounds and medicinal properties to protect from a wide range of microorganisms including plant pathogens and environmental organisms (Bentley, 1997; Savithramma et al., 2011; Chung et al., 2011). Therefore, alternative antimicrobials are used from botanicals sources which provide flexibility and diversity, for helping to reducing the side effects and their combination used in synergistic or adjuvant therapy for delay the development of resistance (Keith et al., 2005; Konget al., 2008; Koehn and Carter, 2005; Beghyn et al., 2008; Hunter, 2008). Now a day’s several antimicrobial agents are accessible, that is expensive, has toxicity and yielded drug-resistance mutants. Therefore, it must notice price effective and pronto accessible from natural anti-microbial agents, with minimum aspect effects.
Figure 1. Mechanism of action of antimicrobial agents
Uses of antimicrobials
Antimicrobials are utilized in human medication, food items, farming, domestic animals and family unit items.
Utilized in human medication
Plant Phyto-constituents such as alkaloids, flavonoids, sesquiterpene lactones, diterpenes, triterpenes are the major source for antimicrobial agents. These normally happening plant products prevent infection antibiotic resistance microorganisms, for example, Bacillus cereus, Escherichia coli, and Staphylococcus aureus (Friedman, 2006).
Utilized in food items
Antimicrobial materials are applied in food products for packaging as well as food contact surfaces. Presently multi day's antimicrobial packages have a few structures, for example, expansion of sachets having unpredictable antimicrobial specialists into bundles; covering or adsorption of antimicrobials agents connected as a polymer surfaces; immobilization of antimicrobials to polymers by particle or covalent linkages and that polymers are utilized inalienably antimicrobial. Presently multi day's nourishment borne microbial sicknesses are emerging. So creative approach is required to deal with conquer microbial defilement in nourishment by the looking after quality, freshness and security of sustenance items (Appendini and Hotchkiss, 2002).
Utilized in farming
Benomyl, chlorothalonil and captan are commonly used in plant diseases (Chen et al., 2001). In agriculture imazalil and triadimefon are used to control fungal infection of fruit and vegetables. Subsequently advancement of common antimicrobial agents from plant source may be a promising approach.
Utilized in domestic animals
Numerous antimicrobial agents, for example, tetracyclins, penicillins, macrolides and lincomycin are affirmed for development advancement of animals. Dietary upgrading feed added substances are joined into the creatures to enhance their development rates (Boxall et al., 2003). Such agriculture utilizing antimicrobial agents additionally affect the treatment of human sickness. To overcome this some natural antimicrobial agents such as Allium, Artemisia, Clematis, Echium and Euphorbia are used in food animals (Viegi et al., 2003). The Salvadora persica L., Colophospermum mopane and Dichrostachys cinerea L. crude extracts are used by local farmers for the treatment of many domestic animals infections (Mudzengi et al., 2017).
Utilized in family unit items
To avert microbial pollution, antimicrobials are utilized in cotton strands and an extensive variety of plastic applications, for example, phones, healing centre furniture, divider covering, flooring, rooftop, film and so forth (Arcy, 2001). The best fungicide was 8-hydroxyquinoline is utilized in business paints (Lim et al., 2008). Presently multi day's normal antimicrobial agents are utilized in family unit items, which is progressively gainful for the earth and human wellbeing.
Natural antimicrobial agents from land sources
Plants Used as Natural Antimicrobial Agents
Many natural antimicrobials agents are found in plant sources e.g. plants, plant-derived compounds and plant by-products. Plant and various plant parts used as natural antimicrobial agents are mentioned in table 1.
Table 1: Antimicrobial activity present in plants
Common name |
Scientific name |
Family |
Parts Used |
Target organisms |
References |
Bael tree |
Aegle marmelos |
Rutaceae |
Leaf, bark &fruit |
B. subtilis, S. aureus, K. pneumoniae, P. mirabilis, E. coli, S. Paratyphi A, S. paratyphi B |
(Poonkothai and Saravanan, 2008) |
Spotted medick |
Medicago arabica |
Fabaceae |
Root &tops |
B. cereus, B. subtilis, S. aureus, E. faecalis |
(Avato et al., 2006) |
Aloe |
Aloe barbadensis |
Asphodelaceae |
Leaf |
E. coli, E. faecalis, S. aureus |
Athiban et al., 2012) |
Apple |
Malus sylvestris |
Rosaceae |
Leaf |
E. fecalis, S. aureus |
(Hunter and Hull, 1993) |
Basil |
Ocimum basilicum |
Lamiaceae |
Leaf |
P. aeruginosa, Shigella sp., L. monocytogenes, S. aureus, E. coli |
(Kaya et al., 2008) |
Aveloz |
Euphorbia tirucalli |
Euphorbiaceae |
Stem |
B. subtilis, E. coli, Proteus vulgaris, S. aureus |
(Gupta et al., 2013) |
Allspice |
Pimenta dioica |
Myrtaceae |
Leaf |
Pseudomonas fluorescens, B. megaterium |
(Boyd and Benkeblia, 2014) |
Black pepper |
Piper nigrum |
Piperaceae |
Berry |
B. subtilus, E. faecalis, S. xylosus, S. aureus S. epidermidis, E. coli, K. pneumoniae, S. enterica |
(Zarai et al., 2013) |
Barberry |
Berberis vulgaris |
Berberidaceae |
Root |
E. coli |
(Ghareeb et al., 2013) |
Balsam pear |
Momordica charantia |
Cucurbitaceae |
Leaf and fruit |
P. aeruginosa, E. coli, S. aureus, K. pneumoniae, S. typhi |
(Mwambet, 2009) |
Betel pepper |
Piper betel |
Piperaceae |
Leaf |
V. cholera, S. aureus, D. pneumonia, K. aerogenes |
(Shitut et al., 1999) |
Coriander |
Coriandrum sativum |
Apiaceae |
Leaf |
S. aureus, Bacillus sp., E. coli, S. typhi, K. pneumonia, P. mirabilis |
(Matasyoha et al., 2009) |
Caraway |
Carum carvi |
Umbelliferae |
Seed |
E. coli |
(Gupta et al., 2011) |
Clove |
Syzygium aromaticum |
Myrtaceae |
Seed |
E. coli, P. aeruginosa, S. aureus |
(Ajiboye et al., 2016) |
Green tea |
Camellia sinensis |
|
Leaf |
S. mutans, L. Acidophilus, S. aureus, S. epidermidis,S. typhi, S. typhimurium, S. enteritidis, S. flexneri, S. dysenteriae, V. cholerae |
(Anita et al., 2015; Hamilton-miller, 1995) |
Garlic |
Allium sativum |
Amaryllidacee |
Bulb |
E. coli, S. aureus, B. subtilis |
(Viswanathan et al., 2016) |
Marigold |
Calendula officinalis |
Asteraceae |
Petal |
B. subtulis, S. aureus, E. coli, K. pneumoniae |
(Efstratiou et al., 2012) |
Gotu kola |
Centella asiatica |
|
Whole plant |
B cereus, Serratia sp., R mucilaginosa |
(Dhiman et al., 2016) |
Goldenseal |
Hydrastis canadensis |
Ranunculaceae |
Aerial part |
S. aureus |
(Ettefagh et al., 2011) |
Licorice |
Glycyrrhiza glabra |
Legumes |
Root |
S. mutans, S. sanguis, A. viscosus, E. faecalis, S. aureus, E. coli |
(Sedighiniaet al., 2012) |
Turmeric |
Curcuma longa |
Zingiberaceae |
Rhizome |
S. aureus, E. coli |
(Afrose et al., 2015) |
Anantamul |
Hemidesmus indicus |
Apocynaceae |
Root |
S. aureus, K. pneumonia, P. aeruginosa |
(Gayathriand Kannabiran, 2009) |
Papaya |
Carica papaya |
Caricaceae |
Fruit
|
B. cereus, E. coli, S. faecalis S. aureus, P. vulgaris, S. flexneri |
(Dawkins et al., 2003) |
Onion |
Allium cepa |
Amaryllidaceae |
Bulb |
S. aureus, V. cholerae |
(Eltaweel, 2013; Hannan et al., 2010) |
Jamun |
Syzgium cumini L |
Myrtaceae |
Leaf |
E. faecalis, P. aeruginosa, S. flexneri, S. aureus |
(de Oliveira et al., 2007) |
Amla |
Emblica officinalis |
Euphorbiaceae |
Fruit |
E. coli, E. cloacae, K. pneumoniae |
(Kumar et al., 2011) |
Neem |
Azadirachta indica |
Meliaceae |
Leaf &bark |
V. cholera, B. subtilis, E. coli, S. Typhi, M. luteus, P. vulgeris |
(Raut et al., 2014; Koona and Budida, 2011) |
Tulsi |
Ocimum sanctum |
Lamiaceae |
Leaf |
S. aureus, P. aeruginosa, E. coli, S. typhimurium, S. saprophytic |
(Mishra and Mishra, 2011; Kumar et al., 2011) |
Arjun |
Terminalia arjuna |
Combretaceae |
Leaf&bark |
S. aureus, Acinetobacter sp., P. mirabilis, E. coli |
(Aneja et al., 2012) |
Capicum |
Capicum frutescens |
Solanaceae |
Fruit |
P. aeruginosa |
(Soetarno et al., 1997) |
Pomegranate |
Punica granatum L. |
Punicaceae |
Fruit |
B. megaterium, P. aeruginosa, S. aureus, C. xerosis, E. coli, E. faecalis, M. luteus, K. marxianus, R. rubrum |
(Duman et al., 2009) |
Chaff flower |
Achyranthes aspera |
Amaranthaceae |
Root |
S. aureus, E. coli, B. Subtilis, P. vulgeris |
(Beaulah et al., 2011) |
Sessile joyweed |
Alternanthera sessile |
Amaranthaceae |
Leaf |
S. pyogenes, S. typhi, B. subtilis, P. vulgaris |
(Johnson et al., 2010) |
Cola Nut |
Cola acuminate |
Sterculiaceae |
Steam |
S. aureus |
(Shama et al., 2011) |
Wild Jasmine |
Clerodendrum inerme L |
Verbenaceae |
Leaf |
S. aureus |
(Chahal et al., 2010) |
Asthma Weed |
Euphorbia hirta |
Euphorbiaceae |
Whole Plant |
S. aureus, E. coli |
(Ogueke et al., 2007) |
Dahlia |
Dahlia pinnata |
Asteraceae |
Leaf |
E. aerogenes, P. aeruginosa |
(Bissa et al., 2011) |
False Daisy |
Eclipta prostrata L |
Asteraceae |
Leaf |
S. typhi |
(Karthikumar et al., 2007) |
Champa |
Plumeria alba |
Apocynaceae |
Petal |
E. coli |
(Syakira and Brenda, 2010) |
Rosy Milkweed Vine |
Oxystelam esculentum |
Asclepiadaceae |
Leaf |
E. coli |
(Khan et al., 2008) |
White Frangipani |
Plumeria ruba |
Apocynaceae |
Leaf |
S. epidermidis, E. coli |
(Baghel et al., 2010) |
Cherry Ashok |
Polyalthia cerascides |
Annonaceae |
Steam Bark |
Corynebacterium dipthieriae |
(Treeratanapiboon et al., 2011) |
Myrobalan |
Terminalia chebula |
Combretaceae |
Fruit |
S. aureus, S. epidermidis, S. typhi, P. aeruginosa, B. subtillis |
(Kannan et al., 2009) |
Black catnip |
Phyllanthus amarus |
Euphorbiaceae |
Leaf |
S. typhi |
(Oluwafemi and Debiri, 2008) |
corn mint |
Mentha arvensis |
Lamiaceae |
Leaf |
B. cereus, Serratia sp. |
(Dhiman et al., 2016) |
St John's wort |
Hypericum perforatum |
Hypericaceae |
aerial parts |
A. baumanii, E. coli, E. faecalis, K. oxytoca, K. pneumoniae, P. aeruginosa, S. aureus |
(Egamberdieva et al., 2017) |
Plant-derived Compounds
The plant-derived antimicrobial mainly found in herbs and their spices (Cueva et al., 2010; Negi, 2012). The antimicrobial activity of these compounds mainly based on their structural characteristics. Major groups plant compounds that are responsible for antimicrobial activity e.g. phenolics, phenolic acids, quinones, saponins, flavonoids, tannins, coumarins, terpenoids, and alkaloids (Ciocan and Bara, 2007; Lai and Roy, 2004).
Plant By-products
During food processing, large amount of by-products are generated. By-products of fruits and vegetables (Table 2) are potentially good sources of minerals and organic acid that have a wide range of antimicrobial properties (Chanda et al., 2010).
Table 2. Plant by-products used as antimicrobials
By-products |
Major component |
Target organisms |
References |
Green tea waste |
Tannins |
S. aureus, E. coli |
(Sung et al., 2012) |
Coconut husk |
Phenolics and tannins |
L. monocytogenes, S. aureus, V. cholera |
(Wonghirundecha and Sumpavapol, 2012) |
Potato peels |
Chlorogenic, caffeic, gallic, protocatechuic acids |
E. coli, S. typhimurium |
(Sotillo et al., 1998) |
Tomato seeds |
Fatty acids, carotenoids, saponins,phenolic compounds |
S. aureus, S. epidermidis, M. luteus, E. faecalis, B. cereus |
(Taveira et al., 2010) |
Apple peels |
Polyphenolic compounds |
S. aureus, P. fluorescens |
(Agourram et al., 2013) |
Antimicrobial Agents from Animal Sources
Many natural antimicrobials agents are found in animal sources mentioned in Table 3.
Table 3. Antimicrobial agents obtain from animal sources
Antimicrobial agent |
Major source |
Target organisms |
References |
Defensins |
Mammalian epithelial cells of chickens, turkeys |
Gram-positive and Gram-negative bacteria |
(Tiwari et al., 2009) |
Chitosan |
Exoskeletons of Crustaceans & arthropods |
E. coli, S. aureus, Pseudomonas sp., E. coli, L. monocytogenes |
(Tiwari et al., 2009; Leleu et al., 2011) |
Casein and whey |
Milk protein |
Enterobacter sakazakii, E. coli, S. aureus, L. monocytogenes, S. typhimurium, B. subtilis |
(Hayes et al., 2006; Korhonen andRokka, 2010) |
Lactoferrin |
Milk
|
E. coli, L. monocytogenes, Salmonella sp., Pesudomonas sp. |
(Lonnerdal, 2011; Perez et al., 2012) |
Ovotransferrin |
Egg albumin
|
Micrococcus, Bacillus spp., E. coli,L. monocytogenes, S. aureus |
(Perez et al., 2012; Ko et al., 2008; Ko et al, 2009) |
Lactoperoxidase |
Raw milk, colostrum, saliva and other biological secretions |
Salmonella sp., E. coli, S. aureus, L. monocytogenes, Y.entericolitica |
(Perez et al., 2012) |
Pleurocidin |
Myeloid cells and mucosal tissues of many vertebrates and invertebrates |
L. monocytogenes, E. coli |
(Burrowes et al., 2004; Jung et al., 2007) |
Lysozyme |
Hens' eggs, mammalian milk |
C. tyrobutyricum, Bacillus sp., Micrococcus sp., L. monocytogenes |
(Perez et al., 2012; Juneja et al., 2012) |
Antimicrobial Agents from Marine Source
Many natural antimicrobials agents are found in animal sources mentioned in Table 4.
Table 4. Antimicrobial agents from marine source
Classification |
Scientific name |
Family |
Target organisms |
References |
Algae |
Laurencia papillosa |
Rhodomelaceae |
E. coli, P. aerugenosa, K. pneumoniae, & Shigella flexineri |
(Kavita et al., 2013) |
Cnidarians
|
Carijoa sp. |
Clavulariidae |
S. albus, S. aureus, E. coli, P. putida, Nocardia brasiliensis, & Vibrio parahaemolyticus |
(Zhao et al., 2013) |
Melitodes squamata |
Melithaea |
Bacillus subtilis & M. luteus |
(Huang et al., 2012) |
|
Sponges
|
Amphimedon sp. |
Niphatidae |
S. aureus |
(Kubota et al., 2013) |
Callyspongia aerizusa |
Callyspongiidae |
S. aureus, B. subtilis, and E. coli |
(Ibrahim et al., 2010) |
|
Suberea ianthelliformis |
Aplysinellidae |
P. aeruginosa |
(Xu et al., 2012) |
|
Stylissa caribica |
Dictyonellidae |
P. aeruginosa, K. pneumonia |
(Dahiya and Gautam, 2010) |
|
Clathria compressa |
Microcionidae |
S. aureus, MRSA, and VRSA |
(Gupta et al., 2012) |
|
Petromica citrina |
Desmanthidae |
S. aureus, S. epidermidis, E. faecalis, M. fortuitum,Neisseria gonorrhoeae |
(Marinho et al., 2012) |
|
Agelas mauritiana |
Agelasidae |
MRSA and S. aureus |
(Yang et al., 2012) |
|
Arthropods |
Scylla paramamosain |
Portunidae |
C. glutamicum, B. subtilis, M. lysodeikticus, M. luteus, E. coli, S. flexneri, V. harveyi, V. alginolyticus, V. parahaemolyticus, P. aeruginosa, P. stutzeri, P. fluorescens |
(Liu et al., 2012) |
|
Portunus trituberculatus |
Portunidae |
V. alginolyticus, Edwardsiella tarda, P. Aeruginosa & S. aureus |
(Liu et al., 2013) |
|
Scylla paramamosain |
Portunidae |
Aeromonas hydrophila, P. fluorescens, S. flexneri, E. coli, V. harveyi, M. leteus, S. aureus, B. subtilis, B. cereus, S. epidermidis |
(Peng et al., 2012) |
Echinoderms |
Apostichopus japonicus |
Stichopodidae |
E. coli |
(La et al., 2012) |
Mollusks |
Hexaplex trunculus |
Muricidae |
M. luteus, S. pneumonia, C. diphteriae, E. Faecalis, E. cloacae, B. subtilis, B. cereus, S. aureus & S. epidermidis |
(Zarai et al., 2012) |
|
Cenchritis muricatus
|
Littorinidae |
S. aureus & E. coli |
(Lopez-Abarrategui et al., 2012) |
|
Mytilus coruscus |
Mytilidae |
E. coli & S. lutea |
(Yang et al., 2011) |
|
Mytilus coruscus |
Mytilidae |
E. coli, V. parahaemolyticus, P. aeruginosa, P. vulgaris, V. harveyi, B. subtilis, S. aureus, S. luteus, and B. megaterium |
(Liao et al., 2013) |
|
Chlamys farreri |
Pectinidae |
E. coli |
(Zhou et al., 2012) |
Reptiles |
Caretta caretta |
Cheloniidae |
E. coli and S. typhimurium |
(Chattopadhyay et al., 2006) |
Fish |
Gadus morhua |
Gadidae |
Moritella viscose, Yersinia ruckeri, V. anguillarum, Aeromonas hydrophila, Aeromonas salmonicida, P. aeruginosa, E. coli, B. megaterium, Lactobacillus sp. |
(Broekman et al., 2011) |
|
Rachycentron canadum |
Rachycentridae |
E. coli |
(Ngai and Ng, 2007) |
|
Branchiostoma belcheritsingtauense
|
Branchiostomidae |
E. coli |
(Zhang et al., 2005) |
|
Cynoglossus semilaevis |
Cynoglossidae |
Edwardsiella tarda, V. anguillarum, E. coli, M. luteus, S. iniae |
(Li et al., 2013) |
|
Sebastes schlegelii |
Sebastidae |
A. salmonicida, A. hydrophila, Photobacterium damselae, V. parahaemolyticus |
(Kitani et al., 2013) |
|
Cynoglossus semilaevis |
Cynoglossidae |
V. anguillarum |
(Lu et al., 2014) |
|
Oplegnathus fasciatus |
Oplegnathidae |
E. coli, E. tarda, S. iniae |
(Kasthuri et al., 2013) |
|
Scophthalmus maximus |
Scophthalmidae |
E. tarda, V. anguillarum, M. luteus, and S. aureus |
(Zhang et al., 2014; Yu et al., 2013) |
|
Epinephelus coioides |
Serranidae |
P. stutzeri, S. aureus, MRSA |
(Qi et al., 2013; Huang et al., 2013) |
|
Pleuronectes americanus
|
Pleuronectidae |
S. aureus, E. faecium, P. acnes, E. Coli &P. aeruginosa |
(Choi and Lee, 2012) |
Conclusion
Since, there is an increased demand for antibiotic so it is necessary to make free of synthetic chemicals as well as semi-synthetic for the well-being of the living systems. Natural products can be used for the prevention and cost effective in place of synthetic and semi-synthetic antimicrobial drugs to minimize the side effect. Therefore, further investigation is required to determine the optimum levels of antimicrobials that can be safely applied in living systems.
Therefore, there continues to be a need to develop a more practical and effective delivery system for these antimicrobial compounds in food products. Furthermore, safety and health risks of natural antimicrobials need to be assessed before future applications in food products.
Acknowledgement
The authors are grateful to Dr. Mrinmoy Nag, Department of Pharmaceutical Science, Bengal College of Pharmaceutical Sciences and Research, Durgapur for his support while conducting this work.
Conflicts of interest
The authors declare that they have no conflict of interests.
References
Afrose R, Saha SK, Banu LA, Ahmed AU, Shahidullah AS, Gani A, Sultana S, Kabir MR, Ali MY. 2015. Antibacterial effect of Curcuma longa (Turmeric) against Staphylococcus aureus and Escherichia coli. Mymensingh Medical Journal 24 (3): 506-515.
Agourram A, Ghirardello D, Rantsiou K, Zeppa G, Belviso S, Romane A, Oufdou K, Giordano M. 2013. Phenolic content, antioxidant potential and antimicrobial activities of fruit and vegetable by-product extracts. International Journal of Food Properties 16 (5): 1092-1104.
Ahmad I, Mehmood Z, Mohammad F.1998. Screening of some Indian medicinal plants for their antimicrobial properties. Journal of Ethnopharmacology 62: 183-193.
Ajiboye TO, Mohammed AO, Bello SA, Yusuf II, Ibitoye OB, Muritala HF. Onajobi I.B. 2016. Antibacterial activity of Syzygium aromaticum seed: Studies on oxidative stress biomarkers and membrane permeability. Microbial Pathogenesis 95: 208-215.
Aneja KR, Sharma C, Joshi R. 2012. Antimicrobial activity of Terminalia arjuna Wight &Arn.: An ethnomedicinal plant against pathogens causing ear infection. Brazilian Journal of Otorhinolaryngology 78 (1): 68-74.
Anita P, Sivasamy SPD, Kumar MI, Balan N, Ethiraj S. 2015. In vitro antibacterial activity of Camellia sinensis extract against cariogenic microorganisms. Journal of Basic and Clinical Pharmacy 6 (1): 35-39.
Appendini P, Hotchkiss JH. 2002. Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies 3: 113-126.
Athiban PP, Borthakur BJ, Swathika B. 2012.Evaluation of antimicrobial efficacy of Aloe vera and its effectiveness in decontaminating gutta percha cones. Journal of conservative dentistry 15 (3): 246-248.
Avato P, Rossella B, Aldo T, Cesare V, Antonio R, Zbigniew B, Marian J. 2006. Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship. Phytotherapy Research 20 (6): 454-457.
Baghel AS, Mishra CK, Rani A, Sasmal D, Nema RK. 2010. Antibacterial activity of Plumeria rubra Linn plant extract. Journal of Chemical and Pharmaceutical Research 2 (6): 435-440.
Beaulah AG, Sadiq AM, Santhi RJ. 2011. Antioxidant and antibacterial activity of Achyranthes aspera: an in vitro study. Der Pharma Chemica 3 (5): 255-262.
Beghyn T, Deprez-Poulain R, Willand N, Folleas B, Deprez B. 2008. Natural compounds: leads or ideas? Bioinspired molecules for drug discovery. Chemical Biology and Drug Design 72: 3-15.
Bentley R. 1997. Microbial secondary metabolites play important roles in medicine; prospects for discovery of new drugs. Perspectives in Biology and Medicine 40: 364-394.
Bissa S, Bohra A, Bohra A. 2011. Screening of Dahlia pinnata for its antimicrobial activity. Journal of Biological Research 1: 51-55.
Boxall ABA, FoggLA, Kay P, Blackwell PA, Pemberton EJ, Croxford A. 2003.Prioritisation of veterinary medicines in the UK environment. Toxicology Letters 142: 207-218.
Boyd FAH, Benkeblia N. 2014. In vitro evaluation of antimicrobial activity of crude extracts of Pimenta dioica l. (Merr.). Acta Horticulturae 1047, 199-205.
Broekman DC, Zenz A, Gudmundsdottir BK, Lohner K, Maier VH, Gudmundsson GH. 2011. Functional characterization of cod Cath, the mature cathelicid in antimicrobial peptide from Atlantic cod (Gadus morhua). Peptides 32 (10): 2044-2051.
Burrowes O, Hadjicharalambous C, Diamond G, LEE TC. 2004. Evaluation of antimicrobial spectrum and cytotoxic activity of pleurocidin for food applications. Journal of Food Science 69 (3): FMS 66-FMS71.
Chahal JK, Sarin R, Malwal M. 2010. Efficacy of Clerodendrum inerme L. (Garden quinine) against some human pathogenic strains. International Journal of Pharma and Bio Sciences 1 (4): 219-223.
Chanda S, Baravalia Y, Kaneria M, Rakholiya K. 2010. Fruit and vegetable peels-strong natural source of antimicrobics. In current Research, technology and education topics in applied Microbiology and Microbial Biotechnology 444-450.
Chattopadhyay S, Sinha NK, Banerjee S, Roy D, Chattopadhyay D, Roy S. 2006. Small cationic protein from a marine turtle has betadefensin- like fold and antibacterial and antiviral activity. Proteins 64 (2): 524–553.
Chen SK, Eedwards CA, Subler S. 2001. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology & Biochemistry 33: 971-1980.
Choi H, Lee DG.2012. Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity. Biochimica et Biophysica Acta 1820 (12):1831–1838.
Chung PY, Navaratnam P, Chung LY. 2011. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Annals of Clinical Microbiology and Antimicrobials 10: 1-6.
Ciocan ID, Bara I. 2007. Plant products as antimicrobial agents.Universitatii Ale S¸ tiint¸ ifice Analele Alexandru Ioan Cuza. 151-156.
Cueva C, Moreno-Arribas M, Martín-Alvarez PJ, Bills G, Vicente MF, Basilio A,Rivas CL, Requena T, Rodríguez JM, Bartolomé B. 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in microbiology 161(5): 372-382.
Dahiya R, Gautam H.2010. Total synthesis and antimicrobial activity of a natural cycloheptapeptide of marine origin. Marine Drugs 8 (8): 2384–2394.
Dawkins G, Hewitt H, Wint Y, Obiefuna PC, Wint B. 2003. Antibacterial effects of Carica papaya fruit on common wound organisms. West Indian Medical Journal 52 (4): 290-292.
de Oliveira GF, Cardoso FNAJ, da Silva FAA, Gomes MCH, Bastos JK, Cunha WR, de Andrade Silva ML.2007. Antimicrobial activity of Syzygium cumini (Myrtaceae) leaves extract. Brazilian Journal of Microbiology 38 (2): 381-384.
Dhiman R, Aggarwal N, Aneja KR, Kaur M. 2016. In Vitro antimicrobial activity of spices and medicinal herbs against selected microbes associated with juices. International Journal of Microbiology 1-9.
Duman AD, Ozgen M, Dayisoylu KS, Erbil N, Durgac C. 2009. Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules14: 1808-1817.
Efstratiou E, Hussain AI, Nigam PS, Moore JE, Ayub MA, Rao JR. 2012. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complementary Therapies in Clinical Practice 18 (3), 173-176.
Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G. 2017. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Frontiers in Microbiology 8: 1-8.
Eltaweel M. 2013. Assessment of antimicrobial activity of onion extract (Allium cepa) on Staphylococcus aureus; in vitro study. International Conference on Chemical, Agricultural and Medical Sciences 29-30.
Ettefagh KA, Burns JT, Junio HA, Kaatz GW, Cech NB. 2011. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Medica 77 (8): 835-840.
Friedman M. 2006. Antibiotic activities of plant compounds against non-resistant and antibiotic resistant food borne human pathogens. In: Juneja VK, Cherry JP, Tunic MS, ed. Advance in Microbial Food Safety, American Chemical Soceity. Washington DC: USA167-183.
Gayathri M, Kannabiran K. 2009. Antimicrobial activity of Hemidesmus indicus, Ficus bengalensis and Pterocarpus marsupium roxb. Indian Journal of Pharmaceutical Sciences 71 (5): 578-581.
Ghareeb DA, Abd El-Wahab AE, Sarhan EEM, Abu-Serie MM, Demellawy MAE. 2013. Biological assessment of Berberis vulgaris and its active constituent, berberine: antibacterial, antifungal and anti-hepatitis C virus (HCV) effect. Journal of Medicinal Plant Research 7 (21): 1529-1536.
Gupta A, Dubey M, Parmar M, Mahajan S, Sharma R. 2011. Evaluation of antimicrobial activity of Carum carvi (Seeds) extract against E. coli and Aspergillus niger. Drug Invention Today, 3 (9): 211-213.
Gupta N, Vishnoi G, WalA, Wal P. 2013. Medicinal value of Euphorbia tirucalli. Systematic Reviews in Pharmacy 4 (1): 40-46.
Gupta P, Sharma U, Schulz TC, McLean AB, Robins AJ, West LM. 2012. Bicyclic C21 terpenoids from the marine sponge Clathria compressa. Journal of Natural Products 75 (6): 1223–1227.
Hamilton-miller JMT. 1995. Antimicrobial Properties of Tea (Camellia sinensis L.). Antimicrobial Agents and Chemotherapy 39 (11): 2375–2377.
Hannan A, Humayun T, Hussain MB, Yasir M, Sikandar S. 2010. In vitro antibacterial activity of onion (Allium cepa) against clinical isolates of Vibrio cholerae. Journal of Ayub Medical College, Abbottabad 22 (2): 160-163.
Hayes M, Ross R, Fitzgerald G, Hill C, Stanton C. 2006. Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology 72 (3): 2260-2264.
Hemaiswarya S, Kruthiventi AK, Doble M. 2008. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15: 639-652.
Huang HN, Rajanbabu V, Pan CY, ChanYL, Wu CJ, Chen JY. 2013. Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 34 (38):10319–10327.
Huang LS, He F, Huang H, Zhang XY, Qi SH. 2012. Carbamate derivatives and sesqui terpenoids from the South china sea gorgonian Melitodes squamata. Beilstein Journal of Organic Chemistry 8: 170-176.
Hunter MD, Hull LA. 1993. Variation in concentrations of phloridzin and phloretin in apple foliage. Phytochemistry 34: 1251-1254.
Hunter P. 2008. Harnessing nature’s wisdom. Turning to nature for inspiration and avoiding her follies. EMBO Reports 9: 838-840.
Ibrahim SRM, Min CC, Teuscher F, Ebel R, Kakoschke C, Lin WH, Wray V, Edrada-Ebel R, Proksch P. 2010. Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorganic & Medicinal Chemistry 18 (14): 4947-4956.
Johnson M, Wesely EG, Selvan N, Kavitha MS. 2010. In vivoand in vitro anti-bacterial efficacy of Alternanthera sessilis (Linn.). International Journal of Pharmaceutical Research and Development 2 (10): 72-79.
Juneja VK, Dwivedi HP, Yan X. 2012. Novel natural food antimicrobials. Annual Review of Food Science and Technology 3: 381-403.
Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, LeeDG. 2007. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochimica et Biophysica Acta - Biomembranes 1768 (6): 1400-1405.
Kannan P, Ramadevi SR, Hopper W. 2009. Antibacterial activity of Terminalia chebula fruit extract. African Journal of. Microbiology Research 4: 180-184.
Karthikumar S, Vigneswari K, Jegatheesan K. 2007. Screening of antibacterial and antioxidant activities of leaves of Eclipta prostrate (L). Scientific Research and Essays 2 (4): 101-104.
Kasthuri SR, Wan Q, Umasuthan N, Bathige SDNK, Lim BS, Jung HB, Lee J, Whang I. 2013. Genomic characterization, expression analysis, and antimicrobial function of a glyrichin homologue from rock bream, Oplegnathus fasciatus. Fish and Shellfish Immunology 35 (5):1406-1415.
Kavita K, Singh VK, Jha B. 2013. 24-Branched Delta5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiological Research 169 (4): 301-306.
Kaya I, Yiğit N, Benli M. 2008. Antimicrobial activity of various extracts of Ocimum basilicum l. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. African Journal of Traditional 5 (4): 363-369.
Keith CT, Borisy AA, Stockwell BR. 2005. Multicomponent therapeutics for networked systems. Nature Reviews Drug Discovery 4: 71-78.
Khan AV, Ahmad R, Khan AA, Shukla I. 2008. Antibacterial activity of Oxystelma esculentum leaf extracts against some hospital isolated human pathogenic bacterial strains. Journal of Herbal Medicine and Toxicology 2 (2): 67-70.
Kitani Y, Toyooka K, Endo M, Ishizaki S, Nagashima Y. 2013. Intra tissue localization of an antibacterial L-amino acid oxidase in the rockfish Sebastes schlegeli. Developmental and Comparative Immunology 39 (4): 456-459.
Ko K, Mendonca A, Ahn D. 2008. Influence of zinc, sodium bicarbonate, and citric acid on the antibacterial activity of ovotransferrin against Escherichia coli O157:H7 and Listeria monocytogenes in model systems and ham. Poultry Science 87 (12): 2660-2670.
Ko K, Mendoncam A, Ismail H, Ahn D. 2009. Ethylenediaminetetra-acetate and lysozyme improves antimicrobial activities of ovotransferrin against Escherichia coli O157:H7. Poultry Science 88 (2): 406-414.
Koehn FE, Carter GT. 2005. The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery 4, 206-220.
Kong DX, Li XJ, Zhang HY. 2008. Where is the hope for drug discovery? Let history tell the future. Drug Discovery Today 14: 115-119.
Koona S, Budida S. 2011. Antibacterial potential of the extracts of the leaves of Azadirachta indica Linn. Notulae Scientia Biologicae 3 (1): 65-69.
Korhonen HJ, Rokka S. 2010. Properties and applications of antimicrobial proteins and peptides from milk and eggs. In Bioactive food proteins and peptides: Applications in human health 49.
Kubota T, Kamijyo Y, Takahashi-Nakaguchi A, Fromont J, Gonoi T, Kobayashi J. 2013. Zamamiphidin A, a new manzamine related alkaloid from an Okinawan marine sponge Amphimedon sp. Organic Letters 15 (3): 610-612.
Kumar A, Tantry BA, Rahiman S, Gupta U. 2011. Comparative study of antimicrobial activity and phytochemical analysis of methanolic and aqueous extracts of the fruit of Emblica officinalis against pathogenic bacteria. Journal of Traditional Chinese Medicine (313): 246-250.
La MP, Li C, Li L, Sun P, Tang H, Liu BS. 2012. New bioactive sulfated alkenes from the sea cucumber Apostichopus japonicus. Chemistry & Biodiversity 9 (6): 1166-1171.
Lai P, Roy J. 2004. Antimicrobial and chemo preventive properties of herbs and spices. Current Medicinal Chemistry 11(11): 1451-1460.
Latha PS, Kannabiran K. 2006. Antimicrobial activity and phytochemicals of Solanum trilobatum Linn. African Journal of Biotechnology 5: 2402-2404.
Leleu S, Herman L, Heyndrickx M, De Reu K, Michiels C, De Baerdemaeker J, Messens W. 2011. Effects on Salmonella shell contamination and trans-shell penetration of coating hens' eggs with chitosan. International Journal of Food Microbiology 145 (1): 43-48.
Li MF, Chen C, Li J, Sun L. 2013. The C-reactive protein of tongue sole Cynoglossus semilaevis is an acute phase protein that interacts with bacterial pathogens and stimulates the antibacterial activity of peripheral blood leukocytes. Fish and Shellfish Immunology 34 (2): 623-631.
Liao Z, Wang XC, Liu HH, Fan MH, Sun JJ, Shen W. 2013. Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus. Fish and Shellfish Immunology 34 (2), 610-616.
Lim G, Tan TK, Toh A. 1989. The fungal problem in buildings in the humid tropics. International Biodeterioration and Biodegradation 25: 27-37.
Liu HP, Chen RY, Zhang QX, Wang QY, Li CR, Peng H, Cai L, Zheng CQ, Wang KJ. 2012. Characterization of two isoforms of antiliopolysacchride factors (Sp-ALFs) from the mud crab Scylla paramamosain. Fish and Shellfish Immunology 33 (1): 1-10.
Liu Y, Cui Z, Li X, Song C, Shi G, Wang C. 2013. Molecular cloning, genomic structure and antimicrobial activity of PtALF7, a unique isoform of anti-lipopolysaccharide factor from the swimming crab Portunus trituberculatus. Fish and Shellfish Immunology 34 (2), 652-659.
Lonnerdal B. 2011. Biological effects of novel bovine milk fractions. Nestle nutrition workshop Series. Paediatric Programme 67: 41-54.
Lopez-Abarrategui C, Alba A, Lima LA,Maria-Neto S, Vasconcelos IM, Oliveira JT, Dias SC, Otero-Gonzalez AJ, Franco OL. 2012. Screening of antimicrobials from Caribbean sea animals and isolation of bactericidal proteins from the littoral mollusk Cenchritis muricatus. Current Microbiology 64 (5): 501-505.
Lu Y, Wang Q, Liu Y, Shao C, Chen S, Sha Z. 2014. Gene cloning and expression analysis of IRF1 in half-smooth tongue sole (Cynoglossus semilaevis). Molecular Biology Reports 41(6):4093-4101.
Marinho PR, SimasNK, Kuster RM,Duarte RS, Fracalanzza SE, Ferreira DF, Romanos MT, Muricy G, Giambiagi-Demarval M, Laport MS. 2012. Antibacterial activity and cytotoxicity analysis of halistanol trisulphate from marine sponge Petromica citrina. Journal of Antimicrobial Chemotherapy 67 (10): 2396–2400.
Matasyoha JC, Maiyob ZC, Ngureb RM, Chepkorir R. 2009. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chemistry 113 (2): 526-529.
McGaw LJ, Jager AK, Staden JV. 2000. Antibacterial, anthelmintic and anti-amoebic activity in South African medicinal plants. Journal of Ethnopharmacology 72: 247-263.
Mishra P, Mishra S. 2011. Study of antibacterial activity of Ocimum sanctum extract against gram positive and gram negative bacteria. Journal of Food Technology 6 (4): 336-341.
Mudzengi CP, Murwira A, Tivapasi M, Murungweni C, Burumu JV, Halimani T. 2017. Antibacterial activity of aqueous and methanol extracts of selected species used in livestock health management. Pharmaceutical Biology 55 (1): 1054-1060.
Mwambete KD. 2009. The in vitro antimicrobial activity of fruit and leaf crude extracts of Momordica charantia: A Tanzania medicinal plant. African Journal of Health Sciences 9 (1): 34-39.
Negi PS. 2012. Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. International Journal of Food Microbiology 156 (1): 7-17.
Ngai PH, Ng TB. 2007. A mannose-specific tetrameric lectin with mitogenic and antibacterial activities from the ovary of a teleost, the cobia (Rachycentron canadum). Applied Microbiology and Biotechnology 74 (2), 433–438.
Ogueke CC, Ogbulie JN, Okoli IC, Anyanwu BN. 2007. Antibacterial activities and toxicological potentials of crude ethanolic extracts of Euphorbia hirta. Journal of American Science 3 (3): 11-16.
Olofsson SK, Cars O. 2007. Optimizing drug exposure to minimize selection of antibiotic resistance. Clinical Infectious Diseases 45: 129-136.
Oluwafemi F, Debiri F. 2008. Antimicrobial effect of Phyllanthus amarus and Parquetina nigrescens on Salmonella typhi. African Journal of biomedical Research 11: 215-219.
Peng H, Liu HP, Chen B, Hao H, Wang KJ. 2012. Optimized production of scygonadin in Pichia pastoris and analysis of its antimicrobial and antiviral activities. Protein Expression and Purification 82 (1): 37–44.
Perez KL, Taylor TM, Taormina PJ. 2012. Competitive research and development on antimicrobials and food preservatives. Microbiological Research and Development for the Food Industry 109.
Poonkothai M, Saravanan M. 2008. Antibacterial activity of Aegle marmelos against leaf, bark and fruit extracts. Ancient Science of Life 17: 15-18.
Qi J, Shao CL, Li ZY, Gan LS, Fu XM, Bian WT, Zhao HY, Wang CY. 2013. Isocoumarin derivatives and benzofurans from a sponge derived Penicillium sp. fungus. Journal of Natural Products 76 (4): 571-579.
Raut RR, Sawant AR, Jamge BB. 2014. Antimicrobial activity of Azadirachta indica (Neem) against pathogenic microorganisms. Journal of Academia and Industrial Research 3 (7): 327-329.
SavithrammaN, Linga RM, Suhrulatha D. 2011. Screening of medicinal plants for secondary metabolites. Middle-East Journal of Scientific Research 8: 579–584.
Sedighinia F, Afshar AS, Soleimanpour S, Zarif R, Asili J, Ghazvini K. 2012. Antibacterial activity of Glycyrrhiza glabra against oral pathogens: an in vitro study. Avicenna Journal of Phytomedicine 2 (3): 118-124.
Shama IYA, Ahmed ANY, Wala MMS, Warda SA. 2011. Antimicrobial activity of the masticatory Cola acuminate Nut (Gooro). Current Research Journal of Biological Sciences 3 (4), 357-362.
Shitut S, Pandit V, Mehta BK. 1999. The antimicrobial efficiency of Piper betle Linn leaf (stalk) against human pathogenic bacteria and phytopathogenic fungi. Central European Journal of Public Health 7 (3): 137-139.
Soetarno S, Sukrasn O, Yulinah E. 1997. Antimicrobial activities of the ethanol extracts of capsicum fruits with different levels of pungency. Journal of Management Studies 2 (2): 57-63.
Sotillo DR, Hadley M, Wolf-Hall C. 1998. Potato peel extract a non-mutagenic antioxidant with potential antimicrobial activity. Journal of Food Science 63 (5): 907-910.
Sung SH, Kim KH, Jeon BT, Cheong SH, Park JH, Kim DH, Kweon HJ, Moon SH. 2012. Antibacterial and antioxidant activities of tannins extracted from agricultural by-products. Journal of Medicinal Plant Research 6 (15): 3072-3079.
Syakira MH, Brenda L. 2010. Antibacterial capacity of Plumeria alba petals. World Academy of Science, Engineering and Technology 68: 1463-1466.
Taveira M, Silva LR, Vale-Silva LA, Pinto E, Valentaeo P, Ferreres F, de Pinho PG, Andrade PB. 2010. Lycopersicon esculentum seeds: an industrial byproduct as an antimicrobial agent. ournal of Agricultural and Food Chemistry 58 (17): 9529-9536.
Arcy N. 2001. Antimicrobials in plastics: a global review. Plastics, Additives and Compounding 12-13.
Tiwari BK, Valdramidis VP, O'Donnell CP, Muthukumarappan K, Bourke P, Cullen P. 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57 (14): 5987-6000.
Treeratanapiboon L, Worachartcheewan A, Suksrichavalit T, Kiatfuengfoo R, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. 2011. Bioactive 4-Hydroxycinnamide and bioactivities of Polyalthia cerasoides. EXCLI Journal 10: 16-22.
Viegi L, Pieroni A, Guarrera PM, Vangelisti R. 2003. A review of plants used in folk veterinary medicine in Italy as basis for a databank. Journal of Ethnopharmacology 89: 221-244.
Viswanathan V, Phadatare AG, Mukne A. 2016. Antimycobacterial and antibacterial activity of Allium sativum Bulbs. Indian Journal of Pharmaceutical Sciences 76 (3): 256-261.
Wonghirundecha S, Sumpavapol P. 2012. Antibacterial activity of selected plant by-products against food-borne pathogenic bacteria. International Conference on Nutrition and Food Sciences, IPCBEE 39:116-120.
Xu M, Davis RA, Feng Y, Sykes ML, Shelper T, Avery VM, Camp D, Quinn RJ. 2012. Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. Journal of Natural Products 75 (5): 1001-1005.
Yang F, Hamann MT, Zou Y, ZhangMY, Gong XB, Xiao JR, ChenWS, Lin HW. 2012. Antimicrobial metabolites from the Paracel Islands sponge Agelas mauritiana. Journal of Natural Products 75 (4): 774-778.
Yang L, Fan M, Liu X, Wu M, Shi G, Liao Z. 2011. Solution structure and antibacterial mechanism of two synthetic antimicrobial peptides. Sheng Wu Gong Cheng Xue Bao 27 (11): 1564-1573.
Yu LP, Sun BG, Li J, Sun L. 2013. Characterization of a c-type lysozyme of Scophthalmus maximus: expression, activity, and antibacterial effect. Fish and Shellfish Immunology 34 (1): 46–54.
Zarai Z, Boujelbene E, Salem NB, Gargouri Y, Sayari A. 2013. Antioxidant and antimicrobial activities of various solvent extracts piperine and piperic acid from Piper nigrum. LWT Food Science and Technology 50 (2): 634-641.
Zarai Z, Gharsallah H, Hammami A, Mejdoub H, Bezzine S, Gargouri YT. 2012. Antibacterial, anti-chlamydial, and cytotoxic activities of a marine snail (Hexaplex trunculus) phospholipase A2: an in vitro study. Applied Biochemistry and Biotechnology 168 (4): 877-886.
Zhang J, Yu LP, Li MF, Sun L.2014. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish and Shellfish Immunology 38 (1): 127-134.
Zhang S, Sun Y, Pang Q, Shi X.2005. Hemagglutinating and antibacterial activities of vitellogenin. Fish and Shellfish Immunology 19 (1): 93-95.
Zhao HY, Shao CL, Li ZY, Han L, Cao F, Wang CY. 2013. Bioactive pregnane steroids from a South China sea gorgonian Carijoa sp. Molecules 18 (3): 3458-3466.
Zhou Z, Ni D, Wang M, Wang L, Shi X, Yue F, Liu R, Song L. 2012.The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri. Fish and Shellfish Immunology 33 (2), 375-381.